翻訳と辞書
Words near each other
・ Chomphet District
・ Chomphu
・ Chomphu, Lampang
・ Chomphu, Phitsanulok
・ Chompion
・ Chompon Buangam
・ Chompoo Sangpo
・ Chomranice
・ Chomrieng Et Preang Tuok
・ Chomski
・ Chomsky (band)
・ Chomsky (disambiguation)
・ Chomsky (surname)
・ Chomsky hierarchy
・ Chomsky normal form
Chomsky–Schützenberger enumeration theorem
・ Chomsky–Schützenberger representation theorem
・ Chomsky–Schützenberger theorem
・ Chomu
・ Chomu (Rajasthan Assembly constituency)
・ Chomukha Bhairavji Temple
・ Chomutice
・ Chomutov
・ Chomutov District
・ Chomutov Zoo
・ Chomutov–Vejprty/Reitzenhain railway
・ Chomérac
・ Chomýž
・ Chomątowo
・ Chomęc


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chomsky–Schützenberger enumeration theorem : ウィキペディア英語版
Chomsky–Schützenberger enumeration theorem
In formal language theory, the Chomsky–Schützenberger enumeration theorem is a theorem derived by Noam Chomsky and Marcel-Paul Schützenberger about the number of words of a given length generated by an unambiguous context-free grammar. The theorem provides an unexpected link between the theory of formal languages and abstract algebra.
==Statement==
In order to state the theorem, a few notions from algebra and formal language theory are needed.
A ''power series'' over \mathbb is an infinite series of the form
:f = f(x) = \sum_^\infty a_k x^k = a_0 + a_1 x^1 + a_2 x^2 + a_3 x^3 + \cdots
with coefficients a_k in \mathbb. The ''multiplication'' of two formal power series f and g is defined in the expected way as the convolution of the sequences a_n and b_n:
:f(x)\cdot g(x) = \sum_^\infty \left(\sum_^k a_i b_\right) x^k.
In particular, we write f^2 = f(x)\cdot f(x), f^3 = f(x)\cdot f(x)\cdot f(x), and so on. In analogy to algebraic numbers, a power series f(x) is called ''algebraic'' over \mathbb(x), if there exists a finite set of polynomials p_0(x), p_1(x), p_2(x), \ldots , p_n(x) each with rational coefficients such that
:p_0(x) + p_1(x) \cdot f + p_2(x)\cdot f^2 + \cdots + p_n(x)\cdot f^n = 0.
A context-free grammar is said to be ''unambiguous'' if every string generated by the grammar admits a unique parse tree
or, equivalently, only one leftmost derivation.
Having established the necessary notions, the theorem is stated as follows.
:Chomsky–Schützenberger theorem. If L is a context-free language admitting an unambiguous context-free grammar, and a_k := | L \ \cap \Sigma^k | is the number of words of length k in L, then G(x)=\sum_^\infty a_k x^k is a power series over \mathbb that is algebraic over \mathbb(x).
Proofs of this theorem are given by , and by .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chomsky–Schützenberger enumeration theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.